APPLYING THE GLOBAL FUND ALLOCATION FORMULA: ARE THE DATA DRIVING ALLOCATIONS?

Sharp A, Jones A, Honermann B, Sherwood J, Millett G.

Background

- In 2014, the Global Fund approved a new Funding Model (‘NFAN’), in which countries are allocated a target level of funding for a three-year period based on the MNH’s published methodology and data sources. Countries may then submit grant applications for this funding.
- The NFAN was designed to prioritize funding for countries with the greatest need, improve predictability of funding allocations by communicating three-year allocations to countries, and allow greater flexibility by accepting applications throughout the three-year period.
- The NFAN’s methodology for calculating country allocations was published in 2014 and referred to the 2017-2019 allocation period. The methodology includes a quantitatively measured real allocation based on economic capacity and disease burden, and the allocation of qualitative adjustments including HIV prevalence among key populations (KPs).

Methods

We evaluated published allocations for HIV and TB using data primarily from the Global Fund’s API (granting, grant, performance and abstraction), UNAIDS (HIV data), and World Bank (GNI per capita).

1. Has the NFAN made funding more predictable for countries?
 - We calculated the published real allocation methodology (using all the metrics for the 2017-2019 allocation period, using data available in 2014).
 - We compared the calculated real allocation with actual allocation amount to assess how predictable, transparent, and replicable the allocation calculations are for countries and stakeholders.
2. Has the NFAN improved alignment of funding with disease burden?
 - We compared the total amount of funding received by countries in the three years prior to the NFAN (2010-2012, since no grants were signed in 2011) to the allocation amount 2014-2016.
 - We include grants for HIV, TB, and TB/HIV, since we could not separate HIV funding from combined grants.
3. Has the NFAN made funding more key population-responsive?
 - Beginning in the 2017-2019 allocation period, country allocations are adjusted for HIV prevalence among key populations.
 - Using a linear regression model, we measure the association between each of the indicators used in the NFAN and TB/HIV allocations and the magnitude of qualitative adjustments (% difference between calculated real allocation vs. actual allocation).
 - To measure the impact of missing data, we fit a model with a dummy variable for missing data for each of the three KP groups (MSM, SW, PWID).

Results

Has the NFAN made funding more predictable for countries?

- Allocations provide countries with formal levels to funding levels, providing some predictability for countries on maximum funding level achievable.
- However, 58% of countries received allocations in 2017-2019 at least 56% higher or lower than in 2014-2016.
- By linear regression, we find that these period-to-period fluctuations were poorly predicted by the real calculations.
- The difference between the real calculated amount and the actual amount is likely driven by qualitative adjustments.
- Regions with the largest allocation fluctuations 2017-2019 vs. 2014-2016 were those where the real allocation poorly predicted actual allocation, likely due to large qualitative adjustments (Fig. 1).

Has the NFAN improved alignment of funding with need?

- For 2014-2016, HIV and TB grantees signed, totaling US$13.7B, an increase from US$11.5B from 2010-2012.
- Regionally, proportional funding levels declined in High Impact Africa and High Impact Asia, while increasing in High Impact Eastern Africa (Fig. 2).
- On a country level, none of the indicators from the allocation methodology are linearly associated (p > 0.05) with the percent change in funding from 2010-2012 to 2014-2016 (incl. GNI/Capita, PUV); HIV & KP prevalence, ART coverage, or grant absorption on performance.

Has the NFAN made funding more key population-responsive?

- By univariate analysis, countries with higher SW HIV prevalence had larger allocations (p < 0.01), but smaller proportional changes with allocation (p > 0.05). Since SW prevalence was also associated with smaller adjustments (p = 0.032) but did not impact allocation.
- Prevalence in PWID was associated with smaller adjustments (p < 0.015). However, KW prevalence is correlated with several other indicators in the methodology, including number of PLHIV, external HIV spending, denominators of HIV prevalence, reductions in HIV incidence, past allocation, and ART coverage (Table 1).

Conclusions

- The impact of KP prevalence data on allocation is unclear. Higher PWID prevalence is associated with larger allocations, but higher MSM prevalence is correlated with smaller proportional qualitative adjustments. After controlling for other indicators, SW prevalence is not correlated with allocation or qualitative adjustments.
- Missing data does not impact allocation. The availability of KP prevalence data is not statistically associated with allocation or adjustments, suggesting inconsistent use in methodology or the use of non-NFAN data sources.

Greater transparency than the methodology and, in particular, uses and sources of KP prevalence data will improve predictability, transparency, and alignment with need.